Our People
Rob Parker
Lecturer in Earth Observation
EO Data-Model Evaluation
Research interests
My research interests centre around improving our understanding of key terrestrial processes relevant to climate change, in particular related to the carbon cycle, methane and wildfires. I work with data and models, bringing them together with machine learning and developing Digital Twins.
Recent publications
Probabilistic assessment of extreme fire risk under the impact of climate change. 2024-11-27
DOI: https://doi.org/10.5194/egusphere-egu24-13319
China’s methane emissions derived from the inversion of GOSAT observations with a CMAQ and EnKS-based regional data assimilation system. 2024-10
DOI: https://doi.org/10.1016/j.apr.2024.102333
Inverse modeling of 2010–2022 satellite observations shows that inundation of the wet tropics drove the 2020–2022 methane surge. 2024-10
DOI: https://doi.org/10.1073/pnas.2402730121
Community input for a how-to guide for using fire models.. 2024-03-09
DOI: https://doi.org/10.5194/egusphere-egu24-15606
Assessing methane emissions from collapsing Venezuelan oil production using TROPOMI. 2023-12-19
DOI: https://doi.org/10.5194/egusphere-2023-2887
Scenario choice impacts carbon allocation projection at global warming levels. 2023-12-13
DOI: https://doi.org/10.5194/esd-14-1295-2023
A blended TROPOMI+GOSAT satellite data product for atmospheric methane using machine learning to correct retrieval biases. 2023-08-18
DOI: https://doi.org/10.5194/amt-16-3787-2023
Atmospheric data support a multi-decadal shift in the global methane budget towards natural tropical emissions. 2023-07-28
DOI: https://doi.org/10.5194/acp-23-8429-2023
Observed changes in China’s methane emissions linked to policy drivers. 2023-05-15
DOI: https://doi.org/10.5194/egusphere-egu23-10659
Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021. 2023-04-25
DOI: https://doi.org/10.5194/acp-23-4863-2023
A blended TROPOMI+GOSAT satellite data product for atmospheric methane using machine learning to correct retrieval biases. 2023-03-10
DOI: https://doi.org/10.5194/amt-2023-47
Towards a Digital Twin of the Carbon Cycle in Europe. 2023-02-26
DOI: https://doi.org/10.5194/egusphere-egu23-15455
Choice of Forecast Scenario Impacts the Carbon Allocation at the Same Global Warming Levels. 2023-01-04
DOI: https://doi.org/10.5194/egusphere-2022-1483
Evaluation of wetland CH4 in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations. 2022-12-16
DOI: https://doi.org/10.5194/bg-19-5779-2022
Observed changes in China’s methane emissions linked to policy drivers. 2022-10-11
DOI: https://doi.org/10.1073/pnas.2202742119
Atmospheric data support a multi-decadal shift in the global methane budget towards natural tropical emissions. 2022-09-02
DOI: https://doi.org/10.5194/acp-2022-561
Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations. 2022-09-01
DOI: https://doi.org/10.1088/1748-9326/ac8754
Very large fluxes of methane measured above Bolivian seasonal wetlands. 2022-08-09
DOI: https://doi.org/10.1073/pnas.2206345119
Description and Evaluation of an Emission‐Driven and Fully Coupled Methane Cycle in UKESM1. 2022-07
DOI: https://doi.org/10.1029/2021MS002982
Methane emissions responsible for record-breaking atmospheric methane growth rates in 2020 and 2021. 2022-06-17
DOI: https://doi.org/10.5194/acp-2022-425
Retrieval of greenhouse gases from GOSAT and GOSAT-2 using the FOCAL algorithm. 2022-06-09
DOI: https://doi.org/10.5194/amt-15-3401-2022
Methane point source detection and quantification from high-resolution satellite observations and deep learning methods. 2022-03-28
DOI: https://doi.org/10.5194/egusphere-egu22-11695
Retrieval of greenhouse gases from GOSAT and greenhouse gases and carbon monoxide from GOSAT-2 using the FOCAL algorithm. 2022-03-21
DOI: https://doi.org/10.5194/amt-2022-43
Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate. 2022-03-16
DOI: https://doi.org/10.1038/s41467-022-28989-z
An integrated analysis of contemporary methane emissions and concentration trends over China using in situ and satellite observations and model simulations. 2022-01-24
DOI: https://doi.org/10.5194/acp-22-1229-2022
Evaluation of Wetland CH4 in the JULES Land Surface Model Using Satellite Observations. 2022-01-12
DOI: https://doi.org/10.5194/bg-2022-2
Methane Growth Rate Estimation and Its Causes in Western Canada Using Satellite Observations. 2021-11-16
DOI: https://doi.org/10.1029/2020JD033948
The added value of satellite observations of methane forunderstanding the contemporary methane budget. 2021-11-15
DOI: http://dx.doi.org/10.1098/rsta.2021.0106
Sustained methane emissions from China after 2012 despite declining coal production and rice-cultivated area. 2021-10-01
DOI: http://dx.doi.org/10.1088/1748-9326/ac24d1
Large Methane Emissions From the Pantanal During Rising Water‐Levels Revealed by Regularly Measured Lower Troposphere CH4 Profiles. 2021-10
DOI: https://doi.org/10.1029/2021GB006964
Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments. 2021-09-24
DOI: http://dx.doi.org/10.5194/acp-21-14159-2021
Accelerating methane growth rate from 2010 to 2017: leading contributions from the tropics and East Asia. 2021-08-25
DOI: http://dx.doi.org/10.5194/acp-21-12631-2021
An integrated analysis of contemporary methane emissions and concentration trends over China using in situ, satellite observations, and model simulations. 2021-08-19
DOI: https://doi.org/10.5194/acp-2021-464
Supplementary material to "An integrated analysis of contemporary methane emissions and concentration trends over China using in situ, satellite observations, and model simulations". 2021-08-19
DOI: https://doi.org/10.5194/acp-2021-464-supplement
Estimates of North African Methane Emissions from 2010 to 2017 Using GOSAT Observations. 2021-08-10
DOI: http://dx.doi.org/10.1021/acs.estlett.1c00327
Large and increasing methane emissions from eastern Amazonia derived from satellite data, 2010–2018. 2021-07-14
DOI: https://doi.org/10.5194/acp-21-10643-2021
Characterizing model errors in chemical transport modeling of methane: using GOSAT XCH<sub>4</sub> data with weak-constraint four-dimensional variational data assimilation. 2021-06-24
DOI: http://dx.doi.org/10.5194/acp-21-9545-2021
Ozone-induced gross primary productivity reductions over European forests inferred from satellite observations. 2021-05-18
DOI: https://doi.org/10.5194/bg-2021-125
Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH<sub>4</sub> ObsPack) and satellite (GOSAT) observations. 2021-03-25
DOI: http://dx.doi.org/10.5194/acp-21-4637-2021
2010–2015 North American methane emissions, sectoral contributions, and trends: a high-resolution inversion of GOSAT observations of atmospheric methane. 2021-03-22
DOI: http://dx.doi.org/10.5194/acp-21-4339-2021
Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations. 2021-03-10
DOI: http://dx.doi.org/10.5194/acp-21-3643-2021
Rain-fed pulses of methane from East Africa during 2018–2019 contributed to atmospheric growth rate. 2021-02-01
DOI: https://doi.org/10.1088/1748-9326/abd8fa
Toward High Precision XCO 2 Retrievals From TanSat Observations: Retrieval Improvement and Validation Against TCCON Measurements. 2020-11-27
DOI: http://dx.doi.org/10.1029/2020jd032794
Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations. 2020-11-23
DOI: https://doi.org/10.5194/bg-17-5669-2020
The Significance of Fast Radiative Transfer for Hyperspectral SWIR XCO2 Retrievals. 2020-11-12
DOI: https://doi.org/10.3390/atmos11111219
Large and increasing methane emissions from Eastern Amazonia derived from satellite data, 2010–2018. 2020-11-10
DOI: https://doi.org/10.5194/acp-2020-1136
Earth system music: music generated from the United Kingdom Earth System Model (UKESM1). 2020-09-11
DOI: https://doi.org/10.5194/gc-3-263-2020
Exploring Constraints on a Wetland Methane Emission Ensemble (WetCHARTs) using GOSAT Satellite Observations. 2020-07-31
DOI: https://doi.org/10.5194/bg-2020-284
The Global Methane Budget 2000–2017. 2020-07-15
DOI: http://dx.doi.org/10.5194/essd-12-1561-2020
Accelerating methane growth rate from 2010 to 2017: leading contributions from the tropics and East Asia. 2020-07-10
DOI: https://doi.org/10.5194/acp-2020-649
A Decade of GOSAT Proxy Satellite CH<sub>4</sub> Observations. 2020-07-03
DOI: https://doi.org/10.5194/essd-2020-114
Quantifying sources of Brazil’s CH<sub>4</sub> emissions between 2010 and 2018 from satellite data. 2020-06-16
DOI: https://doi.org/10.5194/acp-2020-438
A new space-borne perspective of crop productivity variations over the US Corn Belt. 2020
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85074269853&partnerID=MN8TOARS
Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003-2018) for carbon and climate applications. 2020
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85080864808&partnerID=MN8TOARS
Characterizing model errors in chemical transport modeling of methane: Impact of model resolution in versions v9-02 of GEOS-Chem and v35j of its adjoint model. 2019-11-15
DOI: https://doi.org/10.5194/gmd-2019-248
Characterizing model errors in chemical transport modelling of methane: Using GOSAT XCH<sub>4</sub> data with weak constraint four-dimensional variational data assimilation. 2019-11-15
DOI: https://doi.org/10.5194/acp-2019-786
Supplementary material to "Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions". 2019-05-09
DOI: https://doi.org/10.5194/essd-2019-61-supplement
An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data. 2019
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85076710263&partnerID=MN8TOARS
Global atmospheric carbon monoxide budget 2000-2017 inferred from multi-species atmospheric inversions. 2019
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85072511316&partnerID=MN8TOARS
Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010-2015. 2019
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85067256752&partnerID=MN8TOARS
UKESM1: Description and Evaluation of the U.K. Earth System Model. 2019
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85074861901&partnerID=MN8TOARS
2010-2016 methane trends over Canada, the United States, and Mexico observed by the GOSAT satellite: Contributions from different source sectors. 2018
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85052575266&partnerID=MN8TOARS
A measurement-based verification framework for UK greenhouse gas emissions: An overview of the Greenhouse gAs Uk and Global Emissions (GAUGE) project. 2018
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85051791962&partnerID=MN8TOARS
Attribution of recent increases in atmospheric methane through 3-D inverse modelling. 2018
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85059098408&partnerID=MN8TOARS
Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003-2016. 2018
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85058141807&partnerID=MN8TOARS
Copernicus Climate Change Service (C3S) global satellite observations of atmospheric carbon dioxide and methane. 2018
EID: http://www.scopus.com/inward/record.url?eid=2-s2.0-85065340838&partnerID=MN8TOARS
Evaluating year-to-year anomalies in tropical wetland methane emissions using satellite CH
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85045540321&partnerID=MN8TOARS
Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. 2018
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85054772149&partnerID=MN8TOARS
Atmospheric observations show accurate reporting and little growth in India’s methane emissions. 2017
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85031013498&partnerID=MN8TOARS
Consistent regional fluxes of CH
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85017497633&partnerID=MN8TOARS
Global height-resolved methane retrievals from the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp. 2017
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85032946559&partnerID=MN8TOARS
Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85017506678&partnerID=MN8TOARS
Satellite-derived methane hotspot emission estimates using a fast data-driven method. 2017
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85018926310&partnerID=MN8TOARS
Study of the footprints of short-term variation in XCO
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-85008602494&partnerID=MN8TOARS
Consistent regional fluxes of CH<sub>4</sub> and CO<sub>2</sub> inferred from GOSAT proxy XCH<sub>4</sub>:XCO<sub>2</sub> retrievals, 2010–2014. 2016-10-24
DOI: https://doi.org/10.5194/acp-2016-868
Response to Referee #1. 2016-06-22
DOI: https://doi.org/10.5194/acp-2016-233-AC1
Response to Referee #2. 2016-06-22
DOI: https://doi.org/10.5194/acp-2016-233-AC2
Atmospheric CH
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84982105602&partnerID=MN8TOARS
CH
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84988039658&partnerID=MN8TOARS
Estimates of European uptake of CO
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84957818451&partnerID=MN8TOARS
Role of regional wetland emissions in atmospheric methane variability. 2016
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84998772075&partnerID=MN8TOARS
The GHG-CCI project of ESA’s climate change initiative: Data products and application. 2016
EID: http://www.scopus.com/inward/record.url?eid=2-s2.0-84988477939&partnerID=MN8TOARS
Quantifying lower tropospheric methane concentrations using near-IR and thermal IR satellite measurements: comparison to the GEOS-Chem model. 2015-04-20
DOI: https://doi.org/10.5194/amtd-8-3851-2015
Elevated uptake of CO<sub>2</sub> over Europe inferred from GOSAT X<sub>CO<sub>2</sub></sub> retrievals: a real phenomenon or an artefact of the analysis?. 2015-01-21
DOI: https://doi.org/10.5194/acpd-15-1989-2015
Assessing 5 years of GOSAT Proxy XCH4 data and associated uncertainties. 2015
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84947567904&partnerID=MN8TOARS
Does GOSAT capture the true seasonal cycle of carbon dioxide?. 2015
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84948140495&partnerID=MN8TOARS
Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data. 2015
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84933576228&partnerID=MN8TOARS
Inverse modelling of CH
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84920843550&partnerID=MN8TOARS
Natural and anthropogenic methane fluxes in Eurasia: A mesoscale quantification by generalized atmospheric inversion. 2015
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84942155890&partnerID=MN8TOARS
Quantifying lower tropospheric methane concentrations using GOSAT near-IR and TES thermal IR measurements. 2015
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84940055759&partnerID=MN8TOARS
The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84929061664&partnerID=MN8TOARS
The greenhouse gas project of Esa’s climate change initiative (GHG-CCI): Overview, achievements and future plans. 2015
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84930406752&partnerID=MN8TOARS
Inverse modeling of CH<sub>4</sub> emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY. 2014-05-08
DOI: https://doi.org/10.5194/acpd-14-11493-2014
Supplementary material to "Inverse modeling of CH<sub>4</sub> emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY". 2014-05-08
DOI: https://doi.org/10.5194/acpd-14-11493-2014-supplement
Estimating regional fluxes of CO
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84915819107&partnerID=MN8TOARS
Influence of differences in current GOSAT X
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84897175247&partnerID=MN8TOARS
Natural and anthropogenic methane fluxes in Eurasia: A meso-scale quantification by generalized atmospheric inversion. 2014
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84908012110&partnerID=MN8TOARS
On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements. 2014
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84892774161&partnerID=MN8TOARS
Satellite-inferred European carbon sink larger than expected. 2014
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84919820311&partnerID=MN8TOARS
Spatially resolving methane emissions in California: Constraints from the CalNex aircraft campaign and from present (GOSAT, TES) and future (TROPOMI, geostationary) satellite observations. 2014
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84908136706&partnerID=MN8TOARS
The greenhouse gas climate change initiative (GHG-CCI): Comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84902440911&partnerID=MN8TOARS
The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO<sub>2</sub> and CH<sub>4</sub> retrieval algorithm products with measurements from the TCCON network. 2013-10-02
DOI: https://doi.org/10.5194/amtd-6-8679-2013
A joint effort to deliver satellite retrieved atmospheric CO2 concentrations for surface flux inversions: The ensemble median algorithm EMMA. 2013
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84874384013&partnerID=MN8TOARS
Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84880299854&partnerID=MN8TOARS
Estimating regional methane surface fluxes: The relative importance of surface and GOSAT mole fraction measurements. 2013
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84886749092&partnerID=MN8TOARS
First satellite measurements of carbon dioxide and methane emission ratios in wildfire plumes. 2013
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84880938592&partnerID=MN8TOARS
HDO/H
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84882768790&partnerID=MN8TOARS
Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): Comparison with ground-based TCCON observations and GEOS-Chem model calculations. 2012
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84868647602&partnerID=MN8TOARS
Acetylene C
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-80054078942&partnerID=MN8TOARS
Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground-based TCCON data and model calculations. 2011
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-80051479870&partnerID=MN8TOARS
Intercomparison of integrated IASI and AATSR calibrated radiances at 11 and 12 μm. 2009
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-74549129671&partnerID=MN8TOARS
Observations of an atmospheric chemical equator and its implications for the tropical warm pool region. 2008
DOI: http://www.scopus.com/inward/record.url?eid=2-s2.0-58149215804&partnerID=MN8TOARS
Signatures of atmospheric and surface climate variables through analyses of infra-red spectra (SATSCAN-IR). 2006
EID: http://www.scopus.com/inward/record.url?eid=2-s2.0-33845764252&partnerID=MN8TOARS